MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN AC-48100 Aluminum

Both A206.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 81% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 70
76
Elongation at Break, % 4.2 to 10
1.1
Fatigue Strength, MPa 90 to 180
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 390 to 440
240 to 330
Tensile Strength: Yield (Proof), MPa 250 to 380
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 670
580
Melting Onset (Solidus), °C 550
470
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 90
87

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 36 to 41
24 to 33
Strength to Weight: Bending, points 39 to 43
31 to 38
Thermal Diffusivity, mm2/s 48
55
Thermal Shock Resistance, points 17 to 19
11 to 16

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
72.1 to 79.8
Copper (Cu), % 4.2 to 5.0
4.0 to 5.0
Iron (Fe), % 0 to 0.1
0 to 1.3
Magnesium (Mg), % 0 to 0.15
0.25 to 0.65
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 0.3
Silicon (Si), % 0 to 0.050
16 to 18
Tin (Sn), % 0 to 0.050
0 to 0.15
Titanium (Ti), % 0.15 to 0.3
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 1.5
Residuals, % 0
0 to 0.25