MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. CC381H Copper-nickel

A206.0 aluminum belongs to the aluminum alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
91
Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 4.2 to 10
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
52
Tensile Strength: Ultimate (UTS), MPa 390 to 440
380
Tensile Strength: Yield (Proof), MPa 250 to 380
140

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 670
1180
Melting Onset (Solidus), °C 550
1120
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
40
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
60
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
68
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 36 to 41
12
Strength to Weight: Bending, points 39 to 43
13
Thermal Diffusivity, mm2/s 48
8.4
Thermal Shock Resistance, points 17 to 19
13

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0 to 0.010
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 4.2 to 5.0
64.5 to 69.9
Iron (Fe), % 0 to 0.1
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.2
Nickel (Ni), % 0 to 0.050
29 to 31
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0