MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. Grade N12MV Nickel

A206.0 aluminum belongs to the aluminum alloys classification, while grade N12MV nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is grade N12MV nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 4.2 to 10
6.8
Fatigue Strength, MPa 90 to 180
130
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 390 to 440
600
Tensile Strength: Yield (Proof), MPa 250 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 670
1620
Melting Onset (Solidus), °C 550
1570
Specific Heat Capacity, J/kg-K 880
390
Thermal Expansion, µm/m-K 23
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 3.0
9.2
Embodied Carbon, kg CO2/kg material 8.0
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
34
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 36 to 41
18
Strength to Weight: Bending, points 39 to 43
17
Thermal Shock Resistance, points 17 to 19
19

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 1.0
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.1
4.0 to 6.0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0 to 0.050
60.2 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0