MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. SAE-AISI D4 Steel

A206.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI D4 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is SAE-AISI D4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.2 to 10
8.4 to 15
Fatigue Strength, MPa 90 to 180
310 to 920
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
74
Shear Strength, MPa 260
460 to 1210
Tensile Strength: Ultimate (UTS), MPa 390 to 440
760 to 2060
Tensile Strength: Yield (Proof), MPa 250 to 380
470 to 1540

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 670
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
31
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
4.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
5.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
100 to 160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
27 to 75
Strength to Weight: Bending, points 39 to 43
24 to 47
Thermal Diffusivity, mm2/s 48
8.3
Thermal Shock Resistance, points 17 to 19
23 to 63

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
2.1 to 2.4
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 4.2 to 5.0
0 to 0.25
Iron (Fe), % 0 to 0.1
80.6 to 86.3
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0