MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. SAE-AISI L3 Steel

A206.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI L3 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is SAE-AISI L3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 390 to 440
600 to 2250

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
53

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
21 to 80
Strength to Weight: Bending, points 39 to 43
20 to 49
Thermal Diffusivity, mm2/s 48
12
Thermal Shock Resistance, points 17 to 19
18 to 67

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
1.0 to 1.1
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.1
95.5 to 97.3
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.25 to 0.8
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0.1 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0