MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. C94700 Bronze

A206.0 aluminum belongs to the aluminum alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 4.2 to 10
7.9 to 32
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 390 to 440
350 to 590
Tensile Strength: Yield (Proof), MPa 250 to 380
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
1030
Melting Onset (Solidus), °C 550
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 130
54
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
12
Electrical Conductivity: Equal Weight (Specific), % IACS 90
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 36 to 41
11 to 19
Strength to Weight: Bending, points 39 to 43
13 to 18
Thermal Diffusivity, mm2/s 48
16
Thermal Shock Resistance, points 17 to 19
12 to 21

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 4.2 to 5.0
85 to 90
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 0.2
Nickel (Ni), % 0 to 0.050
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.050
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.050
4.5 to 6.0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
1.0 to 2.5
Residuals, % 0
0 to 1.3