MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. N06200 Nickel

A206.0 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 4.2 to 10
51
Fatigue Strength, MPa 90 to 180
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 260
560
Tensile Strength: Ultimate (UTS), MPa 390 to 440
780
Tensile Strength: Yield (Proof), MPa 250 to 380
320

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 670
1500
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 130
9.1
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
320
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 36 to 41
25
Strength to Weight: Bending, points 39 to 43
22
Thermal Diffusivity, mm2/s 48
2.4
Thermal Shock Resistance, points 17 to 19
21

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 4.2 to 5.0
1.3 to 1.9
Iron (Fe), % 0 to 0.1
0 to 3.0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.050
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0