MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. AISI 201L Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
22 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220
740 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
880
Melting Completion (Liquidus), °C 680
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1130
140

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 20
27 to 37
Strength to Weight: Bending, points 26
24 to 30
Thermal Diffusivity, mm2/s 52
4.0
Thermal Shock Resistance, points 9.3
16 to 23

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.25
16 to 18
Copper (Cu), % 3.7 to 4.5
0
Iron (Fe), % 0 to 0.8
67.9 to 75
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 1.8 to 2.3
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0