MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. EN 1.4646 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
220
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220
750

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 680
1390
Melting Onset (Solidus), °C 550
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 26
24
Thermal Shock Resistance, points 9.3
16

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0.15 to 0.25
17 to 19
Copper (Cu), % 3.7 to 4.5
1.5 to 3.0
Iron (Fe), % 0 to 0.8
59 to 67.3
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.8 to 2.3
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0