MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. EN 1.4749 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
16
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 220
600

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 680
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1130
160

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 52
4.6
Thermal Shock Resistance, points 9.3
22

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0.15 to 0.25
26 to 29
Copper (Cu), % 3.7 to 4.5
0
Iron (Fe), % 0 to 0.8
68.5 to 73.7
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 1.8 to 2.3
0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0