MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. EN 2.4816 Nickel

A242.0 aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
170
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.6
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 220
700

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 680
1370
Melting Onset (Solidus), °C 550
1320
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
260

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 52
3.8
Thermal Shock Resistance, points 9.3
20

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0.15 to 0.25
14 to 17
Copper (Cu), % 3.7 to 4.5
0 to 0.5
Iron (Fe), % 0 to 0.8
6.0 to 10
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 1.8 to 2.3
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.070 to 0.2
0 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0