MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. Grade CW6MC Nickel

A242.0 aluminum belongs to the aluminum alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 220
540

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 680
1480
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
80
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1130
290

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 52
2.8
Thermal Shock Resistance, points 9.3
15

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.15 to 0.25
20 to 23
Copper (Cu), % 3.7 to 4.5
0
Iron (Fe), % 0 to 0.8
0 to 5.0
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 1.8 to 2.3
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0