MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. Nickel 30

A242.0 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.6
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 220
660

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1020
Melting Completion (Liquidus), °C 680
1480
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
290

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 52
2.7
Thermal Shock Resistance, points 9.3
18

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.25
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 3.7 to 4.5
1.0 to 2.4
Iron (Fe), % 0 to 0.8
13 to 17
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 1.8 to 2.3
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.070 to 0.2
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0