MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. C26000 Brass

A242.0 aluminum belongs to the aluminum alloys classification, while C26000 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 1.6
2.5 to 66
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 220
320 to 680

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 210
140
Melting Completion (Liquidus), °C 680
950
Melting Onset (Solidus), °C 550
920
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 12
25
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1130
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 20
11 to 23
Strength to Weight: Bending, points 26
13 to 21
Thermal Diffusivity, mm2/s 52
38
Thermal Shock Resistance, points 9.3
11 to 23

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Bismuth (Bi), % 0
0 to 0.0059
Chromium (Cr), % 0.15 to 0.25
0
Copper (Cu), % 3.7 to 4.5
68.5 to 71.5
Iron (Fe), % 0 to 0.8
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 1.8 to 2.3
0
Silicon (Si), % 0 to 0.6
0
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
28.1 to 31.5
Residuals, % 0
0 to 0.3