MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. C72800 Copper-nickel

A242.0 aluminum belongs to the aluminum alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 1.6
3.9 to 23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 220
520 to 1270

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 680
1080
Melting Onset (Solidus), °C 550
920
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
55
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
38
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1130
360

Common Calculations

Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 20
17 to 40
Strength to Weight: Bending, points 26
16 to 30
Thermal Diffusivity, mm2/s 52
17
Thermal Shock Resistance, points 9.3
19 to 45

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Chromium (Cr), % 0.15 to 0.25
0
Copper (Cu), % 3.7 to 4.5
78.3 to 82.8
Iron (Fe), % 0 to 0.8
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.2 to 1.7
0.0050 to 0.15
Manganese (Mn), % 0 to 0.1
0.050 to 0.3
Nickel (Ni), % 1.8 to 2.3
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.6
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0.070 to 0.2
0 to 0.010
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.3