MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. N08020 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
15 to 34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220
610 to 620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 680
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
38
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.3
6.6
Embodied Energy, MJ/kg 150
92
Embodied Water, L/kg 1130
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 9.3
15

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.15 to 0.25
19 to 21
Copper (Cu), % 3.7 to 4.5
3.0 to 4.0
Iron (Fe), % 0 to 0.8
29.9 to 44
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 1.8 to 2.3
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0