MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. N08031 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.6
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 220
730

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 680
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 12
39
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.3
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1130
240

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 52
3.1
Thermal Shock Resistance, points 9.3
14

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.15 to 0.25
26 to 28
Copper (Cu), % 3.7 to 4.5
1.0 to 1.4
Iron (Fe), % 0 to 0.8
29 to 36.9
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 1.8 to 2.3
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.070 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0