MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. S35135 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.6
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 220
590

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 680
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1130
220

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 26
19
Thermal Shock Resistance, points 9.3
13

Alloy Composition

Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.15 to 0.25
20 to 25
Copper (Cu), % 3.7 to 4.5
0 to 0.75
Iron (Fe), % 0 to 0.8
28.3 to 45
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 1.8 to 2.3
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.070 to 0.2
0.4 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0