MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. 242.0 Aluminum

Both A356.0 aluminum and 242.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 3.0 to 6.0
0.5 to 1.5
Fatigue Strength, MPa 50 to 90
55 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 160 to 270
180 to 290
Tensile Strength: Yield (Proof), MPa 83 to 200
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 500
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 570
530
Solidification (Pattern Maker's) Shrinkage, % 1.3
1.3
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 150
130 to 170
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
33 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 140
96 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
1.3 to 3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
110 to 340
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
45
Strength to Weight: Axial, points 17 to 29
16 to 26
Strength to Weight: Bending, points 25 to 36
23 to 32
Thermal Diffusivity, mm2/s 64
50 to 62
Thermal Shock Resistance, points 7.6 to 13
8.0 to 13

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
88.4 to 93.6
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.2
3.5 to 4.5
Iron (Fe), % 0 to 0.2
0 to 1.0
Magnesium (Mg), % 0.25 to 0.45
1.2 to 1.8
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 6.5 to 7.5
0 to 0.7
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.35
Residuals, % 0
0 to 0.15

Comparable Variants