MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. A201.0 Aluminum

Both A356.0 aluminum and A201.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 3.0 to 6.0
4.7
Fatigue Strength, MPa 50 to 90
97
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 160 to 270
480
Tensile Strength: Yield (Proof), MPa 83 to 200
420

Thermal Properties

Latent Heat of Fusion, J/g 500
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
30
Electrical Conductivity: Equal Weight (Specific), % IACS 140
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
22
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
1250
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 17 to 29
44
Strength to Weight: Bending, points 25 to 36
45
Thermal Diffusivity, mm2/s 64
46
Thermal Shock Resistance, points 7.6 to 13
21

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
93.7 to 95.5
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 0.2
0 to 0.1
Magnesium (Mg), % 0.25 to 0.45
0.15 to 0.35
Manganese (Mn), % 0 to 0.1
0.2 to 0.4
Silicon (Si), % 6.5 to 7.5
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.1