MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. A384.0 Aluminum

Both A356.0 aluminum and A384.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
74
Elongation at Break, % 3.0 to 6.0
2.5
Fatigue Strength, MPa 50 to 90
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 160 to 270
330
Tensile Strength: Yield (Proof), MPa 83 to 200
170

Thermal Properties

Latent Heat of Fusion, J/g 500
550
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
610
Melting Onset (Solidus), °C 570
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
96
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
23
Electrical Conductivity: Equal Weight (Specific), % IACS 140
73

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 17 to 29
32
Strength to Weight: Bending, points 25 to 36
38
Thermal Diffusivity, mm2/s 64
39
Thermal Shock Resistance, points 7.6 to 13
15

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
79.3 to 86.5
Copper (Cu), % 0 to 0.2
3.0 to 4.5
Iron (Fe), % 0 to 0.2
0 to 1.3
Magnesium (Mg), % 0.25 to 0.45
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 6.5 to 7.5
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5