MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. ACI-ASTM CA40 Steel

A356.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.0
10
Fatigue Strength, MPa 50 to 90
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 160 to 270
910
Tensile Strength: Yield (Proof), MPa 83 to 200
860

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 570
1500
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
89
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
1910
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 29
33
Strength to Weight: Bending, points 25 to 36
27
Thermal Diffusivity, mm2/s 64
6.7
Thermal Shock Resistance, points 7.6 to 13
33

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
81.5 to 88.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0