MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. AWS E308LMo

A356.0 aluminum belongs to the aluminum alloys classification, while AWS E308LMo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is AWS E308LMo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.0 to 6.0
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 160 to 270
580

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1110
160

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 29
21
Strength to Weight: Bending, points 25 to 36
20
Thermal Diffusivity, mm2/s 64
4.2
Thermal Shock Resistance, points 7.6 to 13
15

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.2
0 to 0.75
Iron (Fe), % 0 to 0.2
59.6 to 70.5
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0