MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. EN 1.5503 Steel

A356.0 aluminum belongs to the aluminum alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.0
12 to 17
Fatigue Strength, MPa 50 to 90
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 160 to 270
400 to 520
Tensile Strength: Yield (Proof), MPa 83 to 200
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
200 to 490
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 29
14 to 19
Strength to Weight: Bending, points 25 to 36
15 to 18
Thermal Diffusivity, mm2/s 64
14
Thermal Shock Resistance, points 7.6 to 13
12 to 15

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.2
98.4 to 99.239
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0