MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. EN AC-42200 Aluminum

Both A356.0 aluminum and EN AC-42200 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 3.0 to 6.0
3.0 to 6.7
Fatigue Strength, MPa 50 to 90
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 160 to 270
320
Tensile Strength: Yield (Proof), MPa 83 to 200
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 500
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
610
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
410 to 490
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
53
Strength to Weight: Axial, points 17 to 29
34 to 35
Strength to Weight: Bending, points 25 to 36
40 to 41
Thermal Diffusivity, mm2/s 64
66
Thermal Shock Resistance, points 7.6 to 13
15

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
91 to 93.1
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.19
Magnesium (Mg), % 0.25 to 0.45
0.45 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 6.5 to 7.5
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0
0 to 0.1

Comparable Variants