MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. Grade 30 Titanium

A356.0 aluminum belongs to the aluminum alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.0 to 6.0
23
Fatigue Strength, MPa 50 to 90
250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 160 to 270
390
Tensile Strength: Yield (Proof), MPa 83 to 200
350

Thermal Properties

Latent Heat of Fusion, J/g 500
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 610
1660
Melting Onset (Solidus), °C 570
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 21
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
6.9

Otherwise Unclassified Properties

Density, g/cm3 2.6
4.5
Embodied Carbon, kg CO2/kg material 8.0
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1110
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
86
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
590
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 17 to 29
24
Strength to Weight: Bending, points 25 to 36
26
Thermal Diffusivity, mm2/s 64
8.6
Thermal Shock Resistance, points 7.6 to 13
30

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 6.5 to 7.5
0
Titanium (Ti), % 0 to 0.2
98 to 99.76
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4