MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. SAE-AISI 1340 Steel

A356.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is SAE-AISI 1340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.0
11 to 23
Fatigue Strength, MPa 50 to 90
220 to 390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 160 to 270
540 to 730
Tensile Strength: Yield (Proof), MPa 83 to 200
300 to 620

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
240 to 1040
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 29
19 to 26
Strength to Weight: Bending, points 25 to 36
19 to 23
Thermal Diffusivity, mm2/s 64
14
Thermal Shock Resistance, points 7.6 to 13
17 to 23

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0.38 to 0.43
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
97.2 to 97.9
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
1.6 to 1.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0