MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. SAE-AISI 5160 Steel

A356.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.0
12 to 18
Fatigue Strength, MPa 50 to 90
180 to 650
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 160 to 270
660 to 1150
Tensile Strength: Yield (Proof), MPa 83 to 200
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
200 to 2700
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 29
23 to 41
Strength to Weight: Bending, points 25 to 36
22 to 31
Thermal Diffusivity, mm2/s 64
12
Thermal Shock Resistance, points 7.6 to 13
19 to 34

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
97.1 to 97.8
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0