MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. C70600 Copper-nickel

A356.0 aluminum belongs to the aluminum alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.0 to 6.0
3.0 to 34
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 160 to 270
290 to 570
Tensile Strength: Yield (Proof), MPa 83 to 200
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 500
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 610
1150
Melting Onset (Solidus), °C 570
1100
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
44
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.4
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
16 to 290
Stiffness to Weight: Axial, points 15
7.7
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 17 to 29
9.1 to 18
Strength to Weight: Bending, points 25 to 36
11 to 17
Thermal Diffusivity, mm2/s 64
13
Thermal Shock Resistance, points 7.6 to 13
9.8 to 19

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Copper (Cu), % 0 to 0.2
84.7 to 90
Iron (Fe), % 0 to 0.2
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 6.5 to 7.5
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5