MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. C86400 Bronze

A356.0 aluminum belongs to the aluminum alloys classification, while C86400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 3.0 to 6.0
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 160 to 270
470
Tensile Strength: Yield (Proof), MPa 83 to 200
150

Thermal Properties

Latent Heat of Fusion, J/g 500
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 610
880
Melting Onset (Solidus), °C 570
860
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
88
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
19
Electrical Conductivity: Equal Weight (Specific), % IACS 140
22

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
63
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
110
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 53
20
Strength to Weight: Axial, points 17 to 29
16
Strength to Weight: Bending, points 25 to 36
17
Thermal Diffusivity, mm2/s 64
29
Thermal Shock Resistance, points 7.6 to 13
16

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0.5 to 1.5
Copper (Cu), % 0 to 0.2
56 to 62
Iron (Fe), % 0 to 0.2
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.1 to 1.0
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 6.5 to 7.5
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
34 to 42
Residuals, % 0
0 to 1.0