MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. C87500 Brass

A356.0 aluminum belongs to the aluminum alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.0 to 6.0
18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 160 to 270
460
Tensile Strength: Yield (Proof), MPa 83 to 200
190

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
920
Melting Onset (Solidus), °C 570
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 150
28
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
67
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
160
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 17 to 29
16
Strength to Weight: Bending, points 25 to 36
16
Thermal Diffusivity, mm2/s 64
8.3
Thermal Shock Resistance, points 7.6 to 13
17

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0 to 0.5
Copper (Cu), % 0 to 0.2
79 to 85
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 6.5 to 7.5
3.0 to 5.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
12 to 16
Residuals, % 0
0 to 0.5