MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. C94500 Bronze

A356.0 aluminum belongs to the aluminum alloys classification, while C94500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
92
Elongation at Break, % 3.0 to 6.0
12
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 26
34
Tensile Strength: Ultimate (UTS), MPa 160 to 270
170
Tensile Strength: Yield (Proof), MPa 83 to 200
83

Thermal Properties

Latent Heat of Fusion, J/g 500
160
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 610
940
Melting Onset (Solidus), °C 570
800
Specific Heat Capacity, J/kg-K 900
330
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
10
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
9.3
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1110
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
17
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
37
Stiffness to Weight: Axial, points 15
5.5
Stiffness to Weight: Bending, points 53
16
Strength to Weight: Axial, points 17 to 29
5.2
Strength to Weight: Bending, points 25 to 36
7.4
Thermal Diffusivity, mm2/s 64
17
Thermal Shock Resistance, points 7.6 to 13
6.7

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 0 to 0.2
66.7 to 78
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0
16 to 22
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 6.5 to 7.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.2
Residuals, % 0 to 0.15
0