MakeItFrom.com
Menu (ESC)

A356.0 Aluminum vs. S45000 Stainless Steel

A356.0 aluminum belongs to the aluminum alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A356.0 aluminum and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.0 to 6.0
6.8 to 14
Fatigue Strength, MPa 50 to 90
330 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 160 to 270
980 to 1410
Tensile Strength: Yield (Proof), MPa 83 to 200
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 15
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 300
850 to 4400
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 29
35 to 50
Strength to Weight: Bending, points 25 to 36
28 to 36
Thermal Diffusivity, mm2/s 64
4.5
Thermal Shock Resistance, points 7.6 to 13
33 to 47

Alloy Composition

Aluminum (Al), % 91.1 to 93.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.2
1.3 to 1.8
Iron (Fe), % 0 to 0.2
72.1 to 79.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0