MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. 5056 Aluminum

Both A357.0 aluminum and 5056 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
67
Elongation at Break, % 3.7
4.9 to 31
Fatigue Strength, MPa 100
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 240
170 to 240
Tensile Strength: Ultimate (UTS), MPa 350
290 to 460
Tensile Strength: Yield (Proof), MPa 270
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
99

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.2
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 520
170 to 1220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 38
30 to 48
Strength to Weight: Bending, points 43
36 to 50
Thermal Diffusivity, mm2/s 68
53
Thermal Shock Resistance, points 17
13 to 20

Alloy Composition

Aluminum (Al), % 90.8 to 93
93 to 95.4
Beryllium (Be), % 0.040 to 0.070
0
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 0.4 to 0.7
4.5 to 5.6
Manganese (Mn), % 0 to 0.1
0.050 to 0.2
Silicon (Si), % 6.5 to 7.5
0 to 0.3
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15