MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. 5182 Aluminum

Both A357.0 aluminum and 5182 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.7
1.1 to 12
Fatigue Strength, MPa 100
100 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 240
170 to 240
Tensile Strength: Ultimate (UTS), MPa 350
280 to 420
Tensile Strength: Yield (Proof), MPa 270
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 500
390
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
28
Electrical Conductivity: Equal Weight (Specific), % IACS 140
94

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 520
120 to 950
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 38
29 to 44
Strength to Weight: Bending, points 43
36 to 47
Thermal Diffusivity, mm2/s 68
53
Thermal Shock Resistance, points 17
12 to 19

Alloy Composition

Aluminum (Al), % 90.8 to 93
93.2 to 95.8
Beryllium (Be), % 0.040 to 0.070
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0 to 0.2
0 to 0.35
Magnesium (Mg), % 0.4 to 0.7
4.0 to 5.0
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Titanium (Ti), % 0.040 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15