MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. ACI-ASTM CF16F Steel

A357.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
50
Fatigue Strength, MPa 100
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 350
530
Tensile Strength: Yield (Proof), MPa 270
280

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
220
Resilience: Unit (Modulus of Resilience), kJ/m3 520
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 43
19
Thermal Diffusivity, mm2/s 68
4.3
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
61.3 to 72.8
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 6.5 to 7.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0