MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. AISI 304L Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
160 to 350
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
6.7 to 46
Fatigue Strength, MPa 100
170 to 430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 240
370 to 680
Tensile Strength: Ultimate (UTS), MPa 350
540 to 1160
Tensile Strength: Yield (Proof), MPa 270
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
540
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
16
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 520
92 to 1900
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
19 to 41
Strength to Weight: Bending, points 43
19 to 31
Thermal Diffusivity, mm2/s 68
4.2
Thermal Shock Resistance, points 17
12 to 25

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
65 to 74
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0