MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. ASTM Grade HL Steel

A357.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
11
Fatigue Strength, MPa 100
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
27
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1110
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
48
Resilience: Unit (Modulus of Resilience), kJ/m3 520
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
18
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
40.8 to 53.8
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0