MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. AWS E330

A357.0 aluminum belongs to the aluminum alloys classification, while AWS E330 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
29
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 350
580

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.2
5.4
Embodied Energy, MJ/kg 150
75
Embodied Water, L/kg 1110
180

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
20
Strength to Weight: Bending, points 43
19
Thermal Diffusivity, mm2/s 68
3.2
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.18 to 0.25
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0 to 0.2
0 to 0.75
Iron (Fe), % 0 to 0.2
40.7 to 51.8
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0