MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. AWS E70C-Ni2

A357.0 aluminum belongs to the aluminum alloys classification, while AWS E70C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 350
560
Tensile Strength: Yield (Proof), MPa 270
450

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1110
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
140
Resilience: Unit (Modulus of Resilience), kJ/m3 520
540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
20
Strength to Weight: Bending, points 43
19
Thermal Diffusivity, mm2/s 68
14
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.2
94.1 to 98.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5