MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. AWS ERNiCrCoMo-1

A357.0 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrCoMo-1 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is AWS ERNiCrCoMo-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.7
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 350
710

Thermal Properties

Latent Heat of Fusion, J/g 500
330
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
75
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
350

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 38
23
Strength to Weight: Bending, points 43
21
Thermal Diffusivity, mm2/s 68
3.5
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 90.8 to 93
0.8 to 1.5
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.2
0 to 3.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
42.7 to 61.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
0 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5