MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.0070 Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.0070 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.0070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
9.1
Fatigue Strength, MPa 100
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 240
440
Tensile Strength: Ultimate (UTS), MPa 350
740
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.7
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
56
Resilience: Unit (Modulus of Resilience), kJ/m3 520
320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
26
Strength to Weight: Bending, points 43
23
Thermal Diffusivity, mm2/s 68
14
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
99.876 to 100
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.055
Silicon (Si), % 6.5 to 7.5
0
Sulfur (S), % 0
0 to 0.055
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0