MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.1203 Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.1203 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
12 to 15
Fatigue Strength, MPa 100
210 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 240
420 to 480
Tensile Strength: Ultimate (UTS), MPa 350
690 to 780
Tensile Strength: Yield (Proof), MPa 270
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
48
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 520
310 to 610
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
25 to 28
Strength to Weight: Bending, points 43
22 to 24
Thermal Diffusivity, mm2/s 68
13
Thermal Shock Resistance, points 17
22 to 25

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
97.1 to 98.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0