MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.3563 Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.3563 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.3563 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 350
690 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
43
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1110
52

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
24 to 65
Strength to Weight: Bending, points 43
22 to 43
Thermal Diffusivity, mm2/s 68
12
Thermal Shock Resistance, points 17
20 to 54

Alloy Composition

Aluminum (Al), % 90.8 to 93
0 to 0.050
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.4 to 0.46
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.2
96.8 to 98.4
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0