MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4446 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4446 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
140
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
23
Fatigue Strength, MPa 100
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 350
490
Tensile Strength: Yield (Proof), MPa 270
240

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.5
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
93
Resilience: Unit (Modulus of Resilience), kJ/m3 520
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 43
17
Thermal Diffusivity, mm2/s 68
3.6
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
59.7 to 66.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0
12.5 to 14.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0