MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4558 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4558 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4558 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
39
Fatigue Strength, MPa 100
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 240
350
Tensile Strength: Ultimate (UTS), MPa 350
510
Tensile Strength: Yield (Proof), MPa 270
200

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.5
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
160
Resilience: Unit (Modulus of Resilience), kJ/m3 520
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
18
Thermal Diffusivity, mm2/s 68
3.1
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 90.8 to 93
0.15 to 0.45
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
39.2 to 47.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
32 to 35
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
0 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0