MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4565 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.7
35
Fatigue Strength, MPa 100
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 240
590
Tensile Strength: Ultimate (UTS), MPa 350
880
Tensile Strength: Yield (Proof), MPa 270
480

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.2
5.4
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1110
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
260
Resilience: Unit (Modulus of Resilience), kJ/m3 520
550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
31
Strength to Weight: Bending, points 43
26
Thermal Diffusivity, mm2/s 68
3.2
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
41.2 to 50.7
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0