MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4646 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
220
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
34
Fatigue Strength, MPa 100
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 240
500
Tensile Strength: Ultimate (UTS), MPa 350
750
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
220
Resilience: Unit (Modulus of Resilience), kJ/m3 520
460
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
27
Strength to Weight: Bending, points 43
24
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.2
1.5 to 3.0
Iron (Fe), % 0 to 0.2
59 to 67.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0