MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4859 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
140
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
23
Fatigue Strength, MPa 100
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 350
490
Tensile Strength: Yield (Proof), MPa 270
210

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.2
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
91
Resilience: Unit (Modulus of Resilience), kJ/m3 520
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 43
17
Thermal Diffusivity, mm2/s 68
3.4
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
40.3 to 49
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0