MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.4869 Casting Alloy

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.7
5.7
Fatigue Strength, MPa 100
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350
540
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 500
330
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
10
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
26
Resilience: Unit (Modulus of Resilience), kJ/m3 520
230
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
17
Thermal Diffusivity, mm2/s 68
2.6
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
11.4 to 23.6
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0